Nonlinear Direct Torque Control of Interior Permanent Magnet Synchronous Motor Drive

Jackson J. Justo, Francis Mwasilu

Abstract


This paper presents a nonlinear direct torque control (NDTC) strategy of interior permanent magnet synchronous motors (IPMSMs) for electric vehicle (EV) propulsion. The proposed NDTC scheme applies a nonlinear model of IPMSM to dynamically determine the optimal switching states that optimize the EV drivers’ decision to reduce the workload. Moreover, the proposed NDTC method has a simple control structure and can explicitly handle system constraints and nonlinearities. The performance evaluation is conducted via a prototype IPMSM test-bed with a TMS320F28335 DSP. Comparative experimental results provide the evidence of improvements of the proposed NDTC strategy over the conventional DTC strategy by indicating a fast torque response and an accurate speed tracking even under rapid speed change conditions.

Keywords: Direct torque control (DTC), interior permanent magnet synchronous motor (IPMSM), nonlinear direct torque control (NDTC).


Full Text:

PDF

References


Chen Y., Li X., Wiet C. and J. Wang (2014). Energy management and driving strategy for in-wheel motor electric ground vehicles with terrain profile preview. IEEE Trans. Ind. Informat., 10(3): 1938−1947.

Cortes P., Kazmierkowski M.P., Kennel R.M., Quevedo D.E. and Rodriguez J. (2008). Predictive control in power electronics and drives. IEEE Trans. Ind. Electron., 55(12): 4312−4324.

DOI: 10.1109/TIE.2008.2007480

Do T.D., Kwak S., Choi H.H. and Jung J.W. (2014). Suboptimal control scheme design for interior permanent- magnet synchronous motors: An SDRE-based approach. IEEE Trans.

Power Electron., 29(6): 3020−3031.

Errouissi R., Ouhrouche M., Chen C-W.H.and Trynadlowski A.M. (2012). Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron., 59(8): 3078−3088.

Foo G. and Rahman M.F. (2009). Direct torque and flux control of an IPM synchronous motor drive using backstepping approach. IET Electr. Power Appl., 3(5): 413−421. DOI: 10.1049/iet-epa.2008.0182

Foo G.H.B. and Rahman M.F. (2010). Direct torque control of an IPM- synchronous motor drive at very low speed using a sliding-mode stator flux observer. IEEE Trans. Power Electron., 25(4): 933−942. DOI:10.1109/TPEL.2009.2036354

Justo J.J., Mwasilu F., Kim E.-K., Kim J., Choi H.H. and Jung J.-W. (2017). Fuzzy model predictive direct torque control of IPMSMs for electric vehicle applications. IEEE Transactions on Mechatronics, 22(4): 1542 - 1553. DOI:10.1109/TMECH.2017.2665670

Kolli A., Bethoux O., De Bernardinis A., Laboure E. and Coquery G. (2013). Space Vector PWM control synthesis for an H-bridge drive in electric vehicles. IEEE Trans. Veh. Technol., 62(6): 2441−2452. DOI: 10.1109/tvt.2013.2246202

Lee J.S., Choi C.H., Seok J.K. and Lorenz R.D. (2011). Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator

flux linkage observer. IEEE Trans. Ind. Appl., 47(4): 1749−1958.

DOI:10.1109/TIA.2011.2154293

Li S., Li K., Rajamani R. and Wang J. (2011). Model predictive multi- objective vehicular adaptive cruise control. IEEE Trans. Control Syst. Technol., 19(3): 556−566. DOI: 10.1109/TCST.2010.2049203

Ma Z., Saeidi S. and Kennel R. (2014). FPGA implementation of model predictive control with constant switching frequency for PMSM drives. IEEE Trans. Ind. Informat., 10(4): 2055−2063.

DOI: 10.1109/TII.2014.2344432

Mohamed Y.A.R.I. (2007). A newly designed instantaneous-torque control of direct-drive PMSM servo actuator with improved torque estimation and control characteristics. IEEE Trans. Ind. Electron., 54(5): 2864−2873. DOI: 10.1109/TIE.2007.901356

Miranda H., Cortes P., Yuz J.I. and Rodriguez J. (2009). Predictive torque control of induction machines based on state-space models. IEEE Trans. Ind. Electron., 56(6): 1916−1924. DOI: 10.1109/TIE.2009.2014904

Preindl M. and Bolognani S. (2013a). Model predictive direct torque control with finite control set for PMSM drive systems, part I: Maximum torque per ampere operation. IEEE Trans. Ind.

Informat., 9(4): 1912−1921.

Preindl M. and Bolognani S. (2013b). Model predictive direct speed control with finite set of PMSM drive systems. IEEE Trans. Power Electron., 28(2): 1007−1015.

Prior G. and Krstic M. (2013). Quantizedinput control lyapunov approach for permanent magnet synchronous motor drives. IEEE Trans. Control Syst. Technol., 21(5): 1784−1794. DOI: 10.1109/TCST.2012.2212246

Rahman M.F., Haque Md. E., Lixin T. and Limin Z. (2004). Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies. IEEE Trans. Ind. Electron., 54(4): 799−809.

Wallmark O., Lundberg S., and Bongiorno M. (2012). Input admittance expressions for field-oriented controlled salient PMSM drives. IEEE Trans. Power Electron., 27(3): 1514−1520.

Xia C., Zhao J., Yan Y. and Shi T. (2014). A novel direct torque control and flux control method of matrix converter-fed PMSM drives. IEEE Trans. Power Electron., 29(10): 5417−5430.

DOI:10.1109/TPEL.2013.2293171

Xu Z. and Rahman M.F. (2012). Comparison of a sliding observer and a Kalman filter for direct-torque- controlled IPM synchronous motor drive. IEEE Trans. Ind. Electron., 59(11): 4179−4188.

DOI: 10.1109/TIE.2012.2188252

Zhao Y., Qiao W. and Wu L. (2013). An adaptive quasi-sliding-mode rotor position observer-based sensorless control for interior permanent magnet synchronous machines. IEEE Trans. Power Electron., 28(12): 5618−5629. DOI: 10.1109/TPEL.2013.2246871

Zhang X. (2013). Sensorless induction motor drive using indirect vector controller and sliding–mode observer for electric vehicles. IEEE Trans. Veh. Technol., 62(7): 3010−3018. DOI: 10.1109/TVT.2013.2251921

Zhang Y. and Zhu J. (2011a). Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron., 26(1):

−248. DOI:10.1109/TPEL.2010.2059047

Zhang Y. and Zhu J. (2011b). A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency

reduction. IEEE Trans. Power Electron., 26(10): 3055−3067.

DOI:10.1109/TPEL.2011.2129577


Refbacks

  • There are currently no refbacks.