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ABS C

The flow of a Reiner-Rivlin fluid with two viscosity coefficients
through the entrance region of a circular pipe has been studied
numerically. In particular the growth of the entrance length as a
function of the Reynolds number and the non-Newtonian parameters
has been examined. Where comparison could be made, the results
have been compared with existing experimental -and numerical data
as well as the limited theoretical work available.

INTRODUC

The flow of a viscous fluid from a reservoir into a circular tube
is encountered in almost every industrial process involving the
transport of fluids. As such one of the most widely studied
boundary value problems of hydrodynamics is the analysis of the
development of the velocity profile of such flows. Information
gathered from the study of entrance flows is useful in the analysis
of capillary viscometer data on one hand the prediction of
viscoelastic entrance behaviour on the other hand.

Various methods have been employed in solving the entrance Region
problem. They include the analytical approximate approaches such as
the momentum Integral, the kinetic energy End-correction and
linearization of inertia terms of the equations of motion. Otaer
approaches are numerical methods based on finite element methods
and those based on finite differences. In this analysis, a
numerical procedure based on finite differences 1is employad.
Following Greenspan |10| we utilize the stream function vorticity
formulation of the problem.

In this work we intend to examine how the velocity profile
development and the entrance length vary with the Reynolds numoer
and the non-Newtonian parameter.
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The Governing Equations

It is useful to employ Cartesian tensor notation and therefore the
summation convention applies to repeated indices and a comma
preceding a suffix implies partial differentiation with respect to
the corresponding spatial variable. The symbols §ji and €ijk denote
the familiar Kronecker delta and the alternating tensor,
respectively. The continuum theory for viscous fluids requires the
velocity vector field v_ to describe the fluid flow with the
assumption of incompressibility the mass balance law, Vv _ is
subjected to the constraint

Vi i =0 (1)

We restrict ourselves to the steady, laminar flow of a Reiner-
Revlin fluid, hence the balance laws for linear momentum reduce to

ey =g g SOP (2)

with thermal effects and external body forces being neglected.
Here, p is the density assumed constant, Tij are components of the
stress deviator tensor and P is the hydrostatic pressure. The
deviatoric stress tensor is given by, e

= g 2 =i
Tij = —Zuldjj $ 2/3“2126ij ~ 2u213dij 39

where p; and p, are viscosity coefficients which are constants, dij
are components of the rate of deformation tensor given by
r 1
dij = 1/2 'Vi,j + Vj,il' (4)
L

I, and I, are scalar invariants given by

Iy = dijdij: 13 = GEt(dij) )
The flow configuration 1is a «ircular cylinder hence suitable
physical coordinates are c¢ylindrical polar (%,0,r) for a two-

dirensional flow. The equation (1) reduces to
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where Tiy are
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As customary practice, we introduce the following dimensionles:

quantities

- _u ) v B=p \
V= =, U—J, I' == | R = and p = e (11’
a G A 1 u2

2 4 o

uo and po the velocity and

where a denotes the pipe diameter,
We further

pressure at the entrance cross-section respectively.

introduce the vorticity vector w = curl v whose components are

W & & v '
i O T (1‘

the only non-vanishing compcnent of w being

_dv oAy (13)

e RIS
Utilization of the dimensionless variables from equation (11) and

the vorticity from equation (1?) transforms equations (7), (8) and
(6), respectively, to
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and

& d(rv) du (16)
r ar i ax - O
where
pau
Re = ° St W= ga X Eﬂ (17)
My i ’a

are the Reynolds number and the non-Newtonian parameter
respectively.

Taking the curl of equations (14) and (15) eliminates the pressure

‘gradients and reduces (14) and (15) into one equation which, after
using (16), is

aluw)  alw) _ 1 8% a8 (1 v wa? (v
ax ar Re | 3x ar| r ar | T % ] ﬁe[gxz [w r ]
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The stokes stream function ¢ is introduced through the velocity
components

=10y 198 19
u r ar and Vzggg ( )

such that the mass balance equation (16) is satisfied. With u and
v from equation (19) the vorticity equation (13) becomes
2 2
P BV AB L (20)
dx ar r ér
Replacing u and v in equation (18) by the stream function gradients
of equation (19) and some re-arrangement results in the equation
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where ¢ denotes the compression
T = 13-4 &% (22)

2
r ax

The simultaneous solution of equations (20) and (21) gives the flow
prediction. A numerical procedure based on finite differences is
employed. The formulation of the finite difference equations is
based on finite Taylor series expansions of relevant variables over
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the domain.

Numerical Calculations

The domain of integration is covered with a mesh of rectangular
cells of width h and height k. Consider a typical node (0,0) of
the mesh (Fig.1) and the surrounding cells. We define the following
finite difference operators:
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Fig. 1. A typical mesh

With the use of the finite difference operators in equations (23),
an approximation for the differential operators appearing in
equations (20) and (21) is obtained in the following form
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Thus the partial differential equations  (20) and (21) are

discretized, respectively, as follows:
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If we substitute for the finite difference operators using eguations
(23), we find that the coefficient of w at the point where eguations
(26) are applied is:

5[ 1 1 1 U v v
C 2[1 + -_] #0,12 L= iy Eata ) (28)
{ hz kd kro.o P2 B~k I‘o 0

0,0

where the + or - signs depend upon the choice of operator in
equation (23)

If we consider (26) as a linear system in wi,j, assuming V,V and
known, the convergence criterion demands maximization of the
diagonal terms of the corresponding matrix of coefficients 2 . By
proper selection of signs, it is easy to see that the maximum
absolute value of the diagonal term (28) is

c 2[1 g 1 J % ’l | + R *9‘, |Y| = ‘Y‘
o 8 X2 kro ool h = k r (29)

0s0

which is obtained by using upstream finite differences for first-
order derivatives.

The system (25) and (26) of algebraic equations 1is solved by a
successive overrelaxation iterative procedure described in 3 . The
correct application of boundary conditions is most important in
fluid flow problems and is one of the critical factors affecting
convergence particularly in the case of vorticity:

In the entrance region flow through a rigid circular pipe as show
in Fig.2 the boundaries are (i) the entrance cross-section (ii) the
exit cross-section (iii) the rigid wall and (iv) the axis of
symmetry. For solving equation (25) with known values of wi,j we
impose that y takes a constant value along the wall and along the
axis of symmetry; and corresponds to a fully developed flow on the
entrance and on the exit cross-sections. For solving equation (26)
with known values of¥i,j, again we impose that w, in the entrance
and exit sections corresponds to the fully developed flow; on the
wall the no-slip condition 1is assumed so w is calculated from
equation (25) with the additional condition that the normal
derivative of y vanishes while due to continuity w vanishes on the
axis of symmetry. Fig.3 shows mesh points, on boundaries, that are
used to define finite difference operators for boundary conditions.
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Fig.2: The entrance region flow.
Fig. 2 The Entrance Region Flow
The boundary conditions are, thus, at
8y
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For numerical computations we first make initial guesses for both
w and y denote by

(O) {O) . X

w and ¥ then the sequence of numerical iterations as shown in
Fig. 4 is followed.
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Fig. 3 Boundary cells for (a) the pipe wall, (b) the pipe
axis (c) the entrance and (d) the exit-cross section

A complete cycle of iterations™is composed of two subcycles for
the equations (25) and (26). Iﬁ_eqch subcycle the field is scanned
row by row and a single variable is updated during the scanning
process using the appropriate finite difference equations for
interior and boundary nodes. A w(1l) and w(0) the (1) subcycle is
performed and one iteration cycle is thus completed. The procedure
is repeated, by substituting new values of w and .. until the
difference between successive approximation is small enough to the
desired accuracy or until a prescribed number of iterations is
attained.

The velocity components u and v are _ohtained by numerical
differentiation of
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Fig. 4 The iteration sequence

Numerical Results and Discussion

Numerical results are illustrated graphically in diagrams Fig. 5
toc Fig. 10 and tabulated in Table 1 to Table 3. The parameter W
give the non-Newtonian character of the fluid. The larger W value
1s, the more the non-Newtonian influence of the fluid is. R is the
Reynolds number based on the pipe diameter and average velocity.
R characterizes the inertial influence on the fluid. The larger R
gets the more important inertia becomes.

In the foregoing numerical calculations an MxN mesh with maximum
size M = N = 31 has been used. The spacing of the mesh lines in
the r-directional has been used. The spacing of the mesh lines in
the r-directional has been chosen uniform with step size k = so
that rj = rj-1 + jk,J = 1(1)N; with rl = 0. The spacing in the x-
directi nal was increased progressively down stream using the

formula, |3|
xi = tan Inl;T'_TlJJ

tan n
i = 1(1)M; xM = m is the pipe length. The value of m is chosen,
for a given r, so as to provide a suitable pipe length whereas the
n value is chosen so as to control the density of the grid lines
near the entrance of the pipe.

Previous workers such as | 4| suggested optimal relaxation
parameters for voerticity %, and stream functionﬁv, to lie in the
range L ¢ (0.4, 0.8) and (1.0, 1.6). By trial and error the
combination lfy-’ ) = )0.6, 1.4) was found the bhest in terms of

”
rastness in convergence.

The convergence criterion was set at - 10-3 and the number of
iterations was limited to 200. Solutions were obtained for the
values of R (0, 1000) and W (10045 1:00)s

One parameter of interest is the inlet length € based on the
definition € = xi where x1 is the distance alonyg the axis (axial
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distance) where the axial velocity reaches 99% of its terminal
value, i.e. 1.98. For vanishing non-Newtonian parameter W = 0, the
dependence of C on Re has been displayed in Table 1. Comparison of
these results with those by previous investigators has been done.
The very good agreement of the results confirm the accuracy of the
numerical procedure. Table 2 displays the dependence of C on Re
and W.

The distribution of axial and radial velocity components u(x,r)
and v(x,r), respectively, has been studied over the entire field.
of interest is u(x,r) since the radial velocities are consistently
- small. Fig. 5 and Fig. 6 show the distribution of u as a function
. of location for various Re and W values. The centre-line axial
velocity, u(x,0) and their dependencé on Re and W, respectively,
are plotted in Fig. 7 and Fig.8. Finally the effect of Reynolds
numbers and non-Newtonnian parameters on the axial velocity
profiles are displayed, respectively, by Fig. 9 and Fig. 10.

If we consider W fixed, from Fig. 5, Fig. 7 and Fig. 9 we observe
that the fully developed profile is approached faster the higher
Re is. For W = 0.0 the results compare favourably with those by
other workers such as experimental results by Nikuradse in |s| and
numerical results by |6|. Increasing non-Newtonian parameters has
the opposite effect to that of Re as it can be seen from Fig. 6,
Fig, 8 and Fig. 10. The bigger W is the longer the inlet length
is. From Fig. 10 we observe a kink in the velocity profiles that
occurs near the entrance cross-section. The kink appears on either
side of the axis leading to a pair of symmetrically placed maxima
separated by a local minimum of the axis. The kink gets more
pronounced the larger W becomes.

Table. 1 Inlet lengths for Newtonian Fluids at high Reynolds

Numbers
Investigator ' Method Used Inlet
length
c
Present Study Numerical 0.057
Nikuradse in |5]| Experimental 0.063
Schiller in |5]| Momentum Integral 0.029
Campbell & Goldstein in |7] " _ 0.061
Atkinson & Goldstein in |5| Theoretical 0.065
Boussines |5]| " 0.065
Langhaar |8] _ Linearization 0.057
Crane & Burley |4] Numerical 0.056
‘Baumann & Thiele 3 i " 0.057
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Fig.8: Dependence centraline axial velocity
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Fig.9: Effect of the Reymonds number on the axial velocity profiles .
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Fig.10: Effect of the non-Newtonian parameter on the axial velocity profiles.
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Table 2 1Inlet lengths as a function of R and W numbers

i T T r= s
IR W | 0.0 | 0.4 r 1.0 [
L l | 1 ]
I I I | I
| 10 | 0.0852 | 0.0969 | 0.1242 |
t t f t i
| 100 | 0.0568 | 0.0672 | o0.1008 |
f f t t {
| 600 | 0.0565 | 0.0658 | |
L l 1 1 ]
| i 1 1 1
| 1000 | 0.0565 | | |
L | 1 1 J

Table. 3 Axial velocity as a function of location for R = 100 and
various W

I I L] I T 1
| R W | | 0.1 | 0.4 | 3.0

| | | L l |
I 1 1 i 1 1
| | r=0.00 | 1.004 | 1.004 | 1.003

| 0.0006 | 0.25 | 1.012 [ 1.010 | 1.007

[ | 0.45 | 1.137 | 1.145 | 1.148 |
L i | | | |
I T T 1 I 1
| | r=0.00 | 1.719 | 1.654 | 1.477

|..0. 02470 | owes- | v 1.487 | 1.482 | 1.459

| | 0.45 | 0.420 | 0.430 | 0.466 |
| 1 | | | |
I ] |l 1 1 1
| | r=0.000 | w970 l 1.944 | 1.814

| 0,0485 | 0.25 | 1.497 | 1.496 |  1.495

| | 0.45 | 0.384 [ 0.388 | 0.402

L 1 L | i |

Conclusion

The flow of a Reiner-Rivlin fluid in the entrance region of a
circular pipe is studied using a numerical method based on
finite differences. Upwind differences are applied to first
order derivatives ‘in the convection terms.

" ‘The distributions of velocity as well as the inlet lengths, are
given as functions of the Reynolds numbers and non-Newtonian
parameters. Where comparisons could be made they have been
made and the good agreement of the results confirm the accuracy
of the numerical method.
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