THE THREE STATE SINGLE SPEAKER MODEL OF SMALL TELEPHONE SYSTEMS

M. L. Luhanga

Department of Electrical Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania

INTRODUCTION

The speech activity of a single telephone caller may be modelled by either a two-state or a three-state Markov model[1]. If the two state model is used to represent the activity of each speaker in a population of N speakers then the number of active speakers may be represented by a two-dimensional Markov chain[2]. The use of a three state single speaker model results in a three-dimensional Markov chain representation

THE THREE STATE SINGLE SPEAKER MODEL

Focus attention on the talkspurt inter-arrival times for an aggregate process representing the activity of a population on N speakers. Experimental results[1] have shown that when N>25, the talkspurt inter-arrival times for the aggregate process are exponentially distributed thus validating the two state single speaker model. The same experimental results have shown, however, that when N < 10 the talkspurt inter-arrival times are not experimentally distributed. This stems from the fact that the silence length distribution for a single speaker is not exponentially distributed[1]. To more accurately model the aggregate process of N speakers when N<10, a three state single speaker model which yields non-exponentially distributed silence length distributions has to be used. The three state single speaker model is shown in Fig. 1.

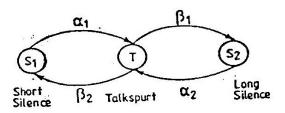


Fig. 1: The Three state single speaker model

Short silences are more frequent than long silences [3,4]. Hence $\beta_1 >> \beta_2$. We assume that:

- (i) all voices conversations begin with a talkspurt
- (ii) calls may end even when in silence, but whenever a call ends and a talkspurt is present, that talkspurt must also end.

The two assumptions given above are required to simplify the mathematical equations and do not compromise the accuracy of the resulting model[5].

Given the above assumptions and using standard manipulation with $R_{\mathbf{j},k}$ being the probability that i calls are off-hook, j calls are in talkspurt and k calls are in short silence yields the following balance equations for a telephone system with N calls:

$$\begin{split} \lambda P_{i-1,j-1,k} + & (i+1-j-k)\alpha_2 P_{1,j-1,k} \\ + & (k-1)\alpha_1 P_{i,j-1,k+1} + (j+1)\beta_1 \ P_{i,J+1,k-1} \\ + & (j+1) \ \beta_2 \ P_{i,j+1,k} + (i+1)\mu P_{i+1,j+1,k} \\ + & (i+1)\mu \delta_{o,j,k} P_{i+1,j,k} \\ & = \{\lambda [\min(1,N-1)] + (i-j-k)\alpha_2 + k\alpha_1 + i\mu \ + j(\beta_1 + \beta_2)\} P_{i,j,k} \end{split}$$
 Where $i = 0,1,...,N$ $j = 0,1,...,i$ $k = 0,1,...,i$ $k = 0,1,...,i-j$ $\delta_{i,j,k}$ is the Kronecker delta $P_{i,j,k} = 0$ for $i < 0, j < 0, k < 0, j > i, k > i, \text{ or } i > N, \text{ and } \lambda = \text{the average call arrival rate, } \mu^{-1} = \text{the mean call holding time.} The traffic intensity, a is defined as } a = \lambda/\mu \end{split}$

From the balance equations it can be shown that the ergodic probability that i calls are off-hook, j calls are in talkspurt and k calls are in short silence, $\pi_{i,j,k}$ is given by:

$$\pi_{i,j,k} = \frac{\frac{A^{i}}{i!} \left(\frac{i}{j+k}\right) \left(\frac{j+k}{k}\right) \left(\frac{\alpha_{2}}{\beta_{2}}\right)^{j+k} \left(\frac{\beta_{1}}{\alpha_{1}}\right)^{k}}{\left(\sum_{1=0}^{N} \frac{A^{1}}{1!}\right) \left(\frac{\alpha_{2}}{\beta_{2}}\left(1 + \frac{\beta_{1}}{\alpha_{1}} + \frac{\beta_{2}}{\alpha_{2}}\right)\right)^{i}}$$

Technical Note

Note that the balance equations can be used to obtain a three-dimensional Markov chain representation of the process. The state space of the Markov chain has (1/6)(N+1+(N+2)(N+3)) states. Thus even for small systems with N=10, say, the state space is fairly large at 286.

CONCLUSION

This note has developed a Markov chain representation of small telephone systems. The resulting model has a fairly large state space for even very small systems.

REFERENCES

- 1. Weinstein C.J. and Hofstetter E.M., The tradeoff between delay and TASI advantage in a packetized speech multiplexer, IEEE *Tran. Commun.*, Vol. COM-27, 1979, pp. 1716-1720.
- 2. Luhanga M.L. and Stern T.E., Analytical modelling of small packet voice systems, *Int. J. Elect. Enging. Educ.*, Vol. 22, 1985, pp 339 344.
- 3. Brady P.T., A model for generating on-off patterns in two-way conversation, *Bell Syst. Tech. J.*, Vol. 48, 19969, pp. 2445 2472.
- 4. Luhanga M.L., Analytical modelling of a packet voice concentrator, PhD, Thesis, Columbia University, 1994.
- 5. Fischer M.J., Delay analysis of TASI with random fluctuations in the number of voice calls, *IEEE Trans. Comm.* Vol. COM-28, 1980, pp.1883-1889.

The manuscript was received on 23rd February 1996 and accepted for publication after revision on 25th August 1996.