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ABSTRACT

Various methods of analysis have been employed to predict the
structural behaviour of the Triangularly Folded Plate Barrel
Vault, with conflicting results. A review of past analytical
and experimental investigations carried out on the structure
show that theoretical analysis based on a smaller effective
width rather than the overall plate width is capable of closely
predicting the deflection behaviour of the structure.

This paper presents an experimental study of the behaviour of
a triangularly folded plate barrel vault with physically reduced
plate width.

It is found that physical reduction of the plate width to
correspond to ‘theoretical’ effective width weakens the
structure, by making it less stiff and highly susceptible to
buckling at high loads.

The results also confirm earlier postulates that the central
part of a plate serves to stabilize the folds and helps to
prevent torsional buckling at higher loads. The results are
useful when considering the design and construction of
cost-effective triangularly folded plate structures.

Uhandisi Journal, Vol.17 No. 1, June, 1993



13

1.0 INTRODUCTION

The triangularly folded plate barrel vault (Fig. 1), which is
a type of cylindrical shell structure, has the advantage of
simplicity in fabrication and erection and the additional
advantage of potentially being a portable and demountable
structure. The geometry of individual plates has a direct
influence on the overall geometry of the structure and hence
an influence on the overall stiffness.

Fig. 1 Triangularly folded plate barrel vault

Various methods of analysis of the triangularly folded plate
barrel vault ranging from simple approximate methods to finite
element computer methods have been used to predict the behaviour
of the structure, with conflicting results{1-4]. However, a
review of experimental investigations already carried out on
the structure show that theoretical analysis based on a smaller
effective width rather than the overall plate width, using the
combined Plate- and Arch~action method[2], is capable of closely
predicting the deflection behaviour of the structure. Benja-
minl2] and zhidkov[®] have further suggested that the central
portions of the triangular plates are structurally less useful
than the folds, that they act merely as covering membranes which
serve to transfer load to the folds only when the structure is
highly stressed.
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Fig. 2 Membrane action in folded plate Pyramid

The theory of plate behaviour in folded plate structures also
presumes that plate buckling at low loads causes the latter to
be carried by the folds alone, therefore literally reducing the
structure to a skeletonl[5]. This has led to further suggestions
that analysis of a single-skin triangularly folded plate barrel
vault may be reduced primarily to the analysis of a skeletal
spatial framel5]. Gilkie and Robak[®] have shown experimentally
that physical reduction of the plate width is possible without
significantly affecting the deformation behaviour of a
hexagon-based folded plate pyramid, however only up to a certain
stress level.

The work presented in this paper was undertaken to study the
behaviour of a triangularly folded plate barrel vault with
physically reduced plate width, using methods of physical model
analysis.

2.0 EXPERIMENTAL INVESTIGATIONS

The objective of the study was to find out how physical reduction
of the plate width affects the structural behaviour of a
triangularly folded plate barrel vault. This objective was
attained by designing and testing four models of the structure,
each with a different plate width as shown in Fig. 3.

/\ Pw-1i Full plate width

Pw-2: 1/6th of full width

Pw=3: 1/9th of full width

PW-4 1/12th of full width

Fig. 3 Variations of plate widths
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The reduced widths were achieved by cutting off the appropriate
central portions of individual plates.

2.1 PHYSICAL MODELS

The experimental models were designed to have the geometrical
configuration shown in Fig. 5. The basic model is a triangularly
folded plate barrel vault with a neutral axis span of 1331.3mm,
a maximum span of 1348.2mm and a maximum height of 674.1imm. It
is composed of identical rhomboidal units made of two 3 mm thick
isosceles triangular plates of base length 300 mm, and a base
angle of 22.5°. The fold angle between adjacent plates was
148.43°. The basic unit is illustrated in Fig. 4.

The designations of the tested models are presented in Table
Lo

Table 1: Model designations

MODEL PLATE WIDTH
PW1 Full Plate Width
Pw2 1/6th of Full Plate Width
PW3 1/9th of Full Plate Width
PW4 1/12th of Full Plate Width

-

6.21cm
22.50° i
;
F— 30cm (=B=2h) ——A—ﬂi A-H-k 0.3cm

bosic element triangulor plate end profile
!7A
I o
N 148,43
§e.az° I o —
L&
baosic structural unit - rhomboid section A - A

Fig. 4 Basic unit of experimental model
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Fig. 5 Elevation and plan of experimental model
2.2 MODEL MATERIALS AND FABRICATION

The basic elements of the model were cut from a 3 mm thick
sheeting of ‘FOAMEX[TM]}/, a foamed rigid polyvinil chloride
(PVC) . Laboratory tensile tests found the material to have an
elastic modulus of 1081 N/mm2? and a Poisson’s ratio of 0.3826.
It was estimated that the material had a yield limit in tension
of 5.74 N/mm2. The joints between elements were provided by a
‘BOSTIK[TM] 7 epoxy resin, which had a modulus of elasticity of
2576 N/mm? and a Poisson’s ratio of 0.4382.

Elements of the structure were assembled on a flat surface so
as to produce a developed plan view of the model. They were
jointed together on one side by a muslin-backed clear ‘BOS-
TIK[TM]’ glue tape to form flexible joints. The whole assembly
of plates was then mounted on a made-to-measure semi-cylindrical
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timber formwork, which gave the model its geometrical form and
overall dimensions. The Jjoints were filled with ‘BOSTIK-
2001[TM]/ epoxy glue which yielded rigid joints after hardening.

2.3 EXPERIMENTAL PROCEDURE

(a) Test set-up

All models were tested on a specially constructed steel testing
framel7]. Foundation for the model was provided in the form of
two channel troughs, separated by a centre-to-centre distance
equivalent to the neutral axis span of the models. Continuous
fixed support on each longitudinal base of the model was achieved
by fixing the base in the troughs with ARALDITE[TM] casting
resin (Fig. 6).

araldite
compound

wooden
form—Ffill

|
o5
8,
7 P

7 A2

metal trough

Fig. 6 Model ‘foundation’

(b) Instrumentation

Electrical resistance strain gauge rosettes were used to measure
strains at selected points on the top and bottom surfaces of
the modell7]. A guarter-bridge resistive network connection of
the gauges was employed, with all gauges sharing a common dummy
to counter thermal effects of the surrounding ambient. An
automatic semi-continuous datalogging system was used to record
test results in microstrains.

Vertical and horizontal deflections at selected positions(7]

were measured by means of mechanical dial gauges with divisions
of 0.0254 mm.
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(c) Loading

The models were tested for three loading casesl’7], designated
1(V), 2(V) and 3(H), comprising of vertical and horizontal line

loads as shown in Fig. 7.

£66.565cm

134.82cm

front elevation

41.86cm i
W 1
I N L
! B
| ]
v 2V,3H
plan
Fig. 7 Loading cases
(d) Test Procedure

Strain and deflection measurements on the model were taken
before and after the load was applied, in order to eliminate
errors due to external effects and initial conditions.
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3.0 RESULTS

3.1 DEFLECTIONS

The deflection diagrams in Fig. 8 show the influence of physically
reducing the plate width[7]. It is shown that while the load
remains constant deflections increase as the plate width
decreases. The model with 1/6th of the full plate width shows
the least increase of deflections compared to the other vari-
ations. Fig. 9 shows relationships between relative deflections
and relative load, with the initial increment of load and
corresponding deflections of the full-width plate model taken
as reference valuesl(7].

DEFLECTION SCALE (mm) P SCALE OF MODEL (mm)
l 0 100 200 00 4

@0 020 3040 % 60
50 + 10
| 200
w N
200
20 1
10t 100
ol I
'3
LOAD CASE 3 (H)
LEGEND __ __ pwi MODEL WITH FULL WIDTH PLATES
e— —epPwz MODEL WITH REDUCED WIDTH PLATES (1) — 1/6W
A __APW3 MODEL WITH REDUCED WIDTH PLATES (11) —1/9W
0 -—~—0 PW4 MODEL WITH REDUCED WIDTH PLATES(111)—17/12W

Fig. 8 Influence of plate width reduction on model deflections
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Fig. 9 Relative model deflections against relative load
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3.2 STRESS

Rosette strain measurements were converted into principal
stresses and maximum shear stresses using appropriate equations
of the theory of elasticity. Rosette positions on the model are
as illustrated in the developed plan shown in Fig. 10. The
principal stresses obtained were generally of lower magnitude
compared to the yield limit in tension of the model material,
5.2 N/mm2. Relationships of stress against service load, at a
selected rosette position at the crown of the model (position
26 on Fig. 10), are shown in Fig. 11[7]. The maximum minor
principal stress obtained was 2.3 N/mm2 compression, with a
corresponding major principal stress of 0.1 N/mmZ¢ compression
and maximum shear stress of 1.1 N/mm2. The results also generally
demonstrate that the greater the reduction in plate width the
higher the stresses in the model. Deviations from the full-plate
model increase as the magnitude of the load increases, indicating
a diminishing capacity to sustain higher loads by models with
reduced plate widths.

Fig. 12 shows the relative model surface stresses against
relative load, corresponding to the results shown in Fig. 11.
The first load increment and its corresponding stress on model
PW1l have been:.taken as reference values in determining the
relative quantities in the diagrams.

L] 2c O
o2 @82l 19¢

[ 3k 30 [Je O
4 1 ®

\J
L 3

i KEY: o3 top and bottom rosette positions

Fig. 10 Rosette strain gauge positions on model for determination of stress and strain7;
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Fig. 11 Influence of plate width reduction on Surface Stress
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Fig. 12 Relative surface stress against relative load
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4.0 DISCUSSION OF RESULTS

The results support Benjamin’s[2] advice against physical
reduction of plate width in order to achieve theoretical
effective width. Similarly, Gilkie & Robak’s[®] deformation
studies on single skin hexagonal based pyramids showed that
deflection properties of a physically reduced and complete
pyramids were similar only up to a certain maximum level of
stress, depending on the overall stiffness of the structure.

5.0 CONCLUSIONS

Physical reduction of plate width to approximate ‘theoretical’
effective width reduces the structural capacity of a triangularly
folded plate barrel vault. However it is also found that a
reduction of plate width to about 1/6th of full plate width
gives a structure which is capable of sustaining relatively
high loads.

It is projected that if a stiffer and stronger material was
used for the skeletal structure better results would have been
obtained even at significant reductions of plate width. This
conclusion is supported by the low values of stress obtained
at maximum load, indicating that the failure was largely due
to serviceabilty limit being reached.

The obtained results also confirm suggestions made in earlier
studies of the structure, that although the central part of a
plate may not be effective in carrying the load, it cannot
actually be removed, since it serves to stabilize the folds and
helps to prevent torsional buckling at higher loads(2].

The results are useful when considering the design and con-
struction of low-cost skeletal triangularly folded plate vaults,
employing stronger materials at the folds and cheaper membrane
materials to cover the central parts.
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Optimum Design for Spring with Orthogonal Design Method
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Abstract :

Orthogonal design method is a sort of direct optimum method, by which the op-
timal result may be obtained through simple computation and analysis. This method
has gained increasingly extensive interest in scientific research, engineering design,
and production management as well.

The orthogonal table is the basic instrument for carrying out optimum design
with orthogonal design method. It is a mathematical table established on the basis of
the idea of isostatic distribution. As various levels may appear in any column, it
makes a partial experiment contain all levels of all factors; furthermore, all combina-
tions of any two columns may appear, which makes any experiment between two fac-
tors become overall experiment. Though the arrangement of the orthogonal table is
only for a partial experiment, nevertheless it may lead to understand the conditions
of overall experiment.

While making optimum design with orthogonal table, it may use the design vari-
ables of the mathmatical model for optimum design for the factors of orthogonal
table, and use the objective function f(X) for the experiment target. By means of or-
thogonal table for the arrangement of design plan, it is easy to determine an optimum
design plan.

This article recommends the basic principles of using orthogonal design method
to proceed with optimal design, and the process of how to use orthogonal design
method for the optimization of spring- ‘

From the theory and examples of this article, it may clearly understand the su-
periority of applying orthogonal design method to conduct optimum design. The op-
timum design can be obtained through simple computation. It is particularly suitable
to conditions that the design variables are integer, or discrete variables.

1.0 Introduction

Orthogonal design method is a sort of direct optimum method, by which the optimum re-
sult may be obtained through simple computation and analysis. This is why the application of
orthogonal design method has gained increasingly extensive interest in scientific research, en-
gineering design, and production management as well.

2.0 The Basic Principles of Orthogonal Design Method For Optimum Design.

The orthogonal table is the basic instrument for carrying out optimum design with or-
thogonal design method. It is a mathematical table established on the basis of the idea of iso-
static distribution. The general orthogonal table with equal levels can be written as L,(b®), in
which “L” indicates orthogonal table, “a” indicates the rows of orthogonal table, that is the
number of experiments to be taken when experiments are arranged by orthogonal table; “c”
indicates the columns of orthogonal table, that is the number of factors that the orthogonal
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table can arrange at most; “b” indicates the number of levels of orthogonal table in the ar-
rangement of factors, that is the different values obtained by factors in experimental designs.
Let's take a most simple orthogonal table L,(2*) (see Table 1) for observation. We can

see:

Table 1 L,(29

Experiment C?){Umn . 1 2 3
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

(1) Each level appears in any columns with equal times of appearance.

(2) All combinations of various levels appear in any two columns, and the joint arrange-

ment is isostatic.

As various levels may appear in any column, it makes a partial experiment contain all lev-
els of all factors; furthermore, all combinations of any two columns may appear, which makes
any experiment between two factors become overall experiment. Though the arrangement of
the orthogonal table is only for a partial experiment, nevertheless it may lead to understand
the conditions of overall experiment.

While making optimum design with orthogonal table, it may use the design variables of
the mathematical model for optimum design for the factors of orthogonal table, and use the
objective function f(X) for the experiment target. By means of orthogonal table for the ar-
rangement of design plan, it is easy to determine an optimum design plan.

3.0 A practical example is shown below to introduce how to make optimum design for spring
by using the method of orthogonal design.

Example: Try to design a cylinder spring with compressed spirals. Its deformed dimen-
sion A=16. 59mm. The maximum working temperature is 150°C, material requires chromium
vanadium steel 50CrVA. The desired working life is 10° cycle index. After intensified treat-
ment, its allowable shearing stress [t]=404. 9MPa. The required rigidity of spring c=41N/
mm. The axial pressure that the spring endures F=680. 2N. Try to determine the wire diame-
ter d, and medium diameter of the spring D, and number of effective coils n. It is requested to
design, under the conditions to meet the strength and rigidity requirements, a structure plan
in minimum weignt:

Solution: 3-1 Write out the optimum mathematical model of this example.

3.1.1. Design variables

Design variables are the wire diameter d, medium diameter of the spring D, and number
of coils n.

S X=[x;, xz» xs17=[d, D, n]" a
3.1. 2. Objective function

Taking the number of noneffective coils N.—l 8. The weight target of the spring to be
calculated by its volume is:

- %idznn«;-%dfonl ()

2
SEQD = %dan+§d’Dn1 =2.47x? x, x;+4. 44xi x, 3)
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3.1.3. Design Constraints
Basing on the strength requirement of the spring,

= SIE;DQD] 4
in which k, curvature coefficient.
_4C—1 ,0.615 1.6
k1_4c_4+ C *(_[_))0.14 (5)
\d
. D
C spring exponent, C=E
F —— Axial pressure endured by the spring., N.
From this computation we can have,
_8kFD 1.6 FD
g1(x)—rd3[r]—]—8' (E)Q':“ ’tdstt] 1
d
=6. B4x7 > x5 ¥ —1<00 (6)
Basing on the figidity requirement of the spring
i <0
n== m.

where, G—shearing elastic modulus of the spring material, and its value here is 8 X10'MPa

From this we can have
Gd*

gx(X)Zm—1=243. 90x} x; ¥ x;'—1<<0 (8)
According to experience,
4<%€14 9
From this, we can have
g () =4—2<0 (10
1
X3
g‘(X)=~x——14<0 an
1
From the analysis shown above, it is known that the optimum mathematical model of this ex-
ample is
min f(X)=2. 47x? x, x;+4. 44 x x* (12>
s to g (X)=6.84 x; ¥ x3*—1<0 (13
g2 (X)=243. 90x} x;° x3 ' —1<<0 a4
gs(X)=4—22<0 (15)
X
g (X=22—14<0 (16)
1

Xy Xgy X3 >0

3.2 Select an appropriate orthogonal table for the preparation of orthogonal design plan.

As the design variables, i.e. factors have been determined, the number of factors’ levels
can be determined by experience basing on the intention of the subject. If no experience in this
area, the original value may be given first, and then try to find another level values according
to geometric series or arithmatic series. The selected orthogonal table should be able to con-
tain all factors needed. A sheet of orthogonal table is only use for one round of design, or it
may have several sheets of orthogonal tables combined into one, if necessary. When a round
of orthogonal tables has completed the selection of optimum goal, it is also necessary to decide
whether another round is necessary to be carried out according to the result of this round.

This example is composed of three design variables, and three numerical values are taken
from each design variable. Thus a table of factor levels is formed. (see table 2)

The selected orthogonal table should be able to contain all factors and all factor levels. It
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can be seen from this point that it is appropriate to select orthogonal table Ly (3*) (See table

29

3)
Table 2 Table of factor levels
ctor d D n
level
1 3 12 5
2 5 20 10
3 10 30 20
Table 3
di alacmrs Design variables Dbjective functions Constraints
ordin
numbers Xy (d) X, (D) X3 (n) 'I(X) g(X)
1 @3 ®12 ®s5 1813.32 Constraints violated
2 O3 @20 @10 5245.2 Contraints violated
3 @3 ®30 ®20 14536. 8 Constraints violated
4 @5 @12 @10 8742 Constraints violated
5 @5 @20 ®20 26920 Constraints Satisfied
6 @5 ®30 @5 12592.5 Constraints violated
7 ®10 @12 ®20 64608 Constraints violated
8 ®10 ®20 @5 33580 Constraints viclated
9 ®10 ®30 @10 87420 Constraints violated
Ya 21595. 32 75163. 32 | 47985. 82
Y; 48254.5| 65745.2 | 101407.2
Y 185608 | 114549. 3 | 106064. 8
R; 164013 | 48804.1 | 53421.38
good level d; D, n
Primary and
secondary factors sems
Optimum
combination d, Dy n,

A factor can be arranged in each column of the orthogonal table, and d, D. n are arranged re-
spectively in the first three columns of L;(3*), and no factor can be put in column 4, which
has no effect in orthogonal design, thereby it may be eliminated from the table. Then the dif-
ferent figures of all columns in the orthogonal table can be changed into corresponding levels
of the homologous factors.

Combine it to this example, the first column is occupied by d, and 3(mm) are written be-
hind the three numerals “1” of the first column, that is level 1 corresponds to factor d; and 5
(mm) —that is level 2 of d, are written behind the three numerals “2” of the first column: and
10{mm) that is the level 3 of d, are written behind the three numerals “3”of the first column.
The remaining two columns are anagolous. And in this way an orthogonal design plan is
formed. Every horrizontal line of the table represents a design plan. If the value of the objec-
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tive function of every design plan can be figured out and the constraints are examined whether
satisfied or not, the result shown in Table 3 is obtained.

3.3 Analysis of the design result.

It is apparent from table 3 that the value of objective function of the 5th design plan is in
the middle, however, it may satisfy all the constraints, which is the better combination.

X=[x, x;» x;1"=[d, D, n]"=[5, 20, 207", £(X)>=26920

Whether this design plan is optimum combination or not, it can be simply (or through au-
dio-visual) analyzed by using the method of maximum difference. In table 3, Yy is the sum of
objective functions of design plans corresponding to j factor of K level. The good level combi-
nation of various factors is the optimum combination. The reason is the value of objective
function being “the less the better”. It can be seen from table 3 that the optimum combination
of this example would be d; D, n;. R; in table 3 is the maximum difference of factor j. Its com-
puting formula is:

Ry=max[ Yy, Y5, Y l—min[ Yy, Y, » Yl an
The bigger the R;, means the bigger the influence of the design variable on the value of the ob-
jective functions. The primary and secondary design variables can be judged from this. It is
clearly seen from table 3 that the primary and secondary sequence of factors in this example is
d, n, D. The better combination directly obtained from the table is d, D, ns. It shows that
there probably exists another best design plan. Since d and n are all discrete variables, if a
smaller value is taken Gf d=4. 5mm, n=19) though the values of objective functions were de-
creased , nevertheless they can not satisfy the constraints. Therefore the optimum solution is
still like this:

X*=[d, D, nJ"=[5, 20, 20]", f(X")=26920

If this example can be determined by using the method of geometric programme, it may
obtain:

x; =d=4. 89mm

x; =D=20.01lmm

xs =n=14. 57

According to related standards and practical conditions, 5 mm can be used for the dia-
gram of the spring wire, medium diameter of the spring can be 20 mm round, and the number
of effective coils can be 15 round. Its value of the objective function can be 20745. If compared
with this example ,it is obvious that the design plan is comparatively better. If d=5mm, D=
20mm, n=15, suppose these figures are used in the original optimum mathematical model,
however, they can hardly meet the constraints. This is why the optimum solution determined
from this example is still the optimum solution.

4.0 Conclusion:

4.1 The application of orthogonal design method to handle optimal design problems is a di-
rect optimization method. The overall conclusion can be obtained through a little computa-
tion.

4.2 It can be seen from the result of this article the superiority of applying optimum design
with orthogonal design method, and it is particularly suitable to conditions that the design
variables are integer, or discrete variables.
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